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Microscopy Image Restoration with Deep
Wiener-Kolmogorov Filters — Supplementary
Material

1 Derivation of expressions for backward pass for WF-K
and WF-KPN

Under the assumption of periodic image boundary conditions, the degradation
matrix K and the convolution matrix G, are circulant and, therefore, they can
be diagonalized in the Fourier domain. Hence, the solution of the Wiener filter
for the proposed models WF-K and WF-KPN can be expressed in a closed form
as

D F
Dk |? + e~ Zd:l Dgal?

where the division of the vector in the numerator by the diagonal matrix in the
denominator is applied in an element-by-element fashion.

(1)

The regularization kernels g4 and the power of the trade-off a are learned dur-
ing the training process using back-propagation. While the solution to Eq.[l|com-
prises complex quantities, the loss function used for the network training is real-
valued, allowing the parameter update to be performed using back-propagation.
For this reason, we have implemented our customized layers which depend on
the analytical derivations of the gradients of the solution x w.r.t. the trainable
parameters.

Below, we present the derivation of the expressions of the gradients for
the backward pass. Unless explicitly stated otherwise, we assume the use of
denominator-layout notation in the calculations.

1.1 Gradient w.r.t. o

We start the derivation of the closed-form expressions for back-propagation with
a calculation of the gradient of the Wiener filter solution x w.r.t. the parameter
a. Let us denote the solution in Eq. as a function defined by the parameters,

f(aayvgd):FH< K D > (2)
Dk + €% > g1 Daal

Note that similarly to Eq. 7 the division operation in the Eq. is meant
to describe the element-wise division of the vector in the numerator by the
corresponding diagonal element of the diagonal matrix in the denominator.



2 V.Pronina et al.

For simplicity and compactness of the calculations we denote the numerator
and the denominator in Eq. as

Dk Fy =z, 3)
D

|DK|2+eaZ|DGd|2 =Q. (4)
d=1

With the notations defined in Egs. and , the function in Eq. yields the

form of

fla,y, ga) =F'Q 7'z (5)

Note that 27! is a diagonal matrix. Assuming the numerator-layout notation,
the gradient of f(«,y,gq) w.r.t. the parameter o can be calculated as

of(a,y,gq) OFHQ 1z Hea 109
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1.2 Gradient w.r.t. gg4

Next, we derive the expression for the gradient of f(a,y,gq) w.r.t. the regu-
larization kernel gg. To do that, we rewrite Eq. as f(a,y,g4) = F7h(g),

where
Ak O Fy

— = :
Ak [? + e D4y [Tagal?

This way, we can express the gradient of f(a,y,gq) w.r.t. g4 as

h(g)

(7)

Of(a,y, 8a) _ OF"h(g) _ Oh(g)
0ga 0gq 0gq

F*. (8)

We emphasize that Dk and Dg, are diagonal matrices and we use the following
notation:

>\K = U@C(DK)
>‘Gd = vec(DGd) = ngd (9)
Ty = FSGdPGd S (CNXLd.

Here vec(D) is meant to define the vector which lies on the main diagonal of
the diagonal matrix D. Note that the operation ® corresponds to element-wise
multiplication, and the division in Eq. applies element-wisely. Here S, €
RN*N ig a circulant shift operator and Pg, € RY*L4 is a zero-padding operator.
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Taking into consideration Eq. (7)) and the notations in Eq. (9)), h(g) can be

rewritten as
M A OFy
M1 Ak [2+e> >0 | IM;Tagql?
h(g) = , (10)
My A OFy
IMyAk|2+ex S0 IMyTagal?

where M; € R1¥ is a vector every element of which except i is equal to zero,
and the i-th element is equal to 1. Therefore, the i-th element of the vector h(g)
is

hi(g) = Vi 01 —
IMAK|? + e 3L, [MiTaggl?  bi+eui(g)
Here we denote

a; = M;Ag © Fy,

b; = |M; Ak |? (12)
D D

w =Y |M;Tagal” = ) g] Ti' M/ MiTaga.
d=1 d=1

To calculate the gradient of h;(g) w.r.t. the j-th regularization kernel g; one
must perform indirect differentiation, starting with acquiring the gradient of

u,(g) w.rt. gj,

dui(g) _ <~ (O g
i dmsTangT dmTagT *
= —T; M, M;T;gq+—T,M, M, T gd> =
og; = <5gj @ og; T (13)
= (T; "M M;T; + T, M/ M,T)g;.
Incorporating the result obtained in Eq. into %g(jg), we derive
ohi(g) _  9(bi + e“u;(g)) " _ a e” dui(g) _
Ig; ' g "(bi +eu;(g))? gy
M A OF (14)
= —e K Y - (Rij + Rij)gj,
(IMGAK [ + e 32y, [MiTagal?)?
where R;; = TfMZ-TMiTj and Riu is conjugate to R;;.
The gradient of 86%(5) can be written as
Oh(g) _ [ohi(g) on: oh
be = [ 6g(jg) 8zg(jg) 81;5;) c RLAXN (15)
J
Taking into consideration Eq. and applying the chain rule, we derive the
expression for aah%g@)F*q from Eq. , where q € RV*X! is a real-valued vector,

backpropagated from further layers. This way we can write

oh(g)
0g;

_ =~ 9hi(g)
0g;

F*q

Qi, Qi=M;F*q. (16)

=1
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Let us derive the expression under the summation in Eq. (16) as

oh;(g) o M;Ak © Fy
0 Qi =—e 2 D 2)2
8; (IMLGAK|? 4 e >y M Tagal?)
- (Rij + Rij)g;M;F*q = —e“(Rij + Rij)g;M;z. (17)

Here we use the notation D = diag(Ak), Dag = diag(Ag,), and therefore
— Dy Fy ® F*q
(IDk[2+e> 327, [Dg,l?)? ’

Here, the division operation corresponds to the element-wise division of the
vector in the numerator by the corresponding diagonal elements of the diagonal
matrix in the denominator. Here diag(A) denotes a square matrix with vector A
on the main diagonal and zeros otherwise.

Incorporating Eq. into Eq. and considering Q = F*q we can write

Z

9h(g) S o 3
g, 2~ > (Rij + Rij)giMiz = —¢* 3 (T M MiT;+
J

i=1 i=1

D
+TH MiTMiTj) gz = —"P¢ S¢, <FH Z M M;Ag,z;+
=1
D
+FT ZMJM,-AEJ,ZZ) = —e"P¢, 8¢, (F' (Mg, ©2)+
=1
+F'(Ag, © z)) = —e"P¢,S¢, (FH(AG], ®z)+FI(Ag, © z*)) .
(18)

We note that F¥ (Ag, ® z*) is real, therefore F¥(Ag, ©® z*) = F7(Ag, © z*).
This way Eq. can be rewritten as

oh
aé@ Q= —¢"Pg,SE, (F7(Ag, ©2) +F'(Ag, 02%)) =
J
—e"PE SEFY (A, © (z+27)) = (19)

= —2e"Pg,SG,F (Mg, © Re(2)) .

This way the expression for the gradient of f(«,y,gq) with respect to the
regularization kernel gg is

8f(047}’agd) T T wH
T o 97 EPGSGFT
(20)
Dy F
: )\GdQRe< - K- 22@F*q)].
(IDx[* +e* 3 [Da,[?)

The division operation in Eq. defines the element-wise division of the vector
in the numerator by the corresponding diagonal elements of the diagonal matrix
in the denominator.
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1.3 Gradient w.r.t. y

Finally, we derive the expression for the gradient of f(«,y,gq) w.r.t. the input
y. Although this formula is not used in the training routine presented herein,
we include the derivation to cover a general case of a larger pipeline which
would comprise our network, e.g., when several Wiener filters are stacked into a
sequence. For this derivation, we use the original non FFT-based formulation of
the Wiener filter:

D
flayy,ga) = (KTK+e*y GjGa) 'Ky, (21)
d=1

Here we denote K"K +e® ZdD:l G] G4 = B. This way, Eq. can be rewritten
as (KTK + e ZdD:l G,G.) 'K'y = B7'K'y, and the expression for the
gradient of f(«,y,gq) w.r.t. the input y can be simplified as

of(a,y,ga) 0B 'K'y
dy - 9y

=KB ' =KB L (22)

As it was stated above, the matrices K and G4 are decomposed in the Fourier
domain as

K = FDkF, G, =FDg,F, (23)

where F € CV*¥ is the Fourier (DFT) matrix, F# € CN*V is its inverse,

Dk, Dg, € C¥*N are diagonal matrices. Using the FFT-based inference of

the Wiener filter and the notation defined in Eq. , the gradient of f(a,y, gq)
w.r.t. the input y in Eq. can be rewritten as

D
=F"Dg(Dk[*+¢* ) |Dgy*)'F=F'Q 'DgF. (24)
d=1

af(a7 Yy, gd)
dy

2 Variation of kernels number and size for WF-K and
WF-KPN

The proposed models WF-K and WF-KPN employ a group of D regularization
kernels of size K x K to obtain the solution in the form of

D F
% = FH K=Y . (25)
Dx|? +e*3 5 [Daal?

We performed an ablation study to understand the influence of the number and
the size of the regularization kernels on the image restoration quality. Specifically,
we trained both models, WF-K and WF-KPN, implementing D = 8, K = 3
and D = 24, K = 5 regularization kernels. For the ablation study, we used
the same dataset and the training pipeline as in the main case. Namely, we
implemented a Gaussian deblurring dataset, that was created by taking the
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Table 1. PSNR and SSIM comparisons on Gaussian image deblurring for five different
noise levels for different number and size of the regularization kernels

STD
0.001 0.005 0.01 0.05 0.1
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Input 36.23 .8955|35.37 .8791|33.93 .8339(26.03 .3858|21.14 .1718
WF-K 35.66 .8849|35.61 .8834|35.45 .8787|32.74 .7950(29.27 .6835
WEF-KPN|38.72 .9253|37.98 .9176|36.80 .9028|32.33 .8022(29.20 .7259
WF-K 35.81 .8861(35.75 .8846(35.58 .8798|32.75 .7945|29.21 .6807
WF-KPN|39.95 .9368|38.41 .9218|37.20 .9057|32.69 .8095|29.20 .7386

D=8 K=3

D=24,K=5

ground-truth samples from the FMD [50] and the dataset described in [4] and
by cropping them into the tiles of size 256 x 256. All images were rescaled to
the range [0,1]. During the training process, a ground-truth sample from 975
training samples is convolved with a randomly chosen blur kernel from a set of
25 training PSFs, followed by a perturbationn with i.i.d. Gaussian noise with
standard deviation from the set (0.001, 0.005, 0.01, 0.05, 0.1). To evaluate the
performance of the algorithms, we used 5 test sets of images distorted with
the Gaussian noise of different levels. In particular, we used 230 ground-truth
images and convolved them with a fixed blur kernel from a sub-set of 5 PSFs
reserved for testing. Finally, the noisy observation of a blurry image is produced
by adding the Gaussian noise, with standard deviations being taken from the
set (0.001, 0.005, 0.01, 0.05, 0.1). Note that all ground-truth and the resulting
distorted images are grayscale in all experiments (the false color Figures in the
main paper were produced to emphasize fine details in the background).

Results in the Table[I]show that increasing the number and the size of kernels
in WF-K method leads to improvement in PSNR of nearly 0.15dB (in the low
noise regime). Yet, at high noise levels, an increase of the size and the number
of regularization kernels results in a marginal PSNR drop of 0.06dB. For WF-
KPN, increasing the number and the size of kernels improves the results for all
noise levels, from nearly 0.4dB in the high noise regime to nearly 1.25dB at
the low noise levels. Table [I| shows that the increase of the parameters of the
network expectedly leads to improvement of the results. In particular, increasing
the number and the size of the kernels yields better performance at the low noise
levels.

Regularization kernels, predicted with the models WF-K and WF-KPN with
D =8, K = 3, are shown in Figure [T] along with the results of the restoration
with both models. The images show that WF-K provides a group of learnable
kernels which are identical for all images, whereas WF-KPN predicts a group of
regularization kernels per image. Results of the restoration with both models,
presented in the Figure [l demonstrate that WF-KPN tends to restore images
better than WF-K.
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3 Additional Results

Additional results for deblurring of images corrupted with the Gaussian noise
of different levels are presented in Fig. We observe that our methods are
marginally inferior to the DMSP-NA and FDN on the lowest noise levels, how-
ever, our method WF-KPN-SA outperforms the other methods in the higher
noise regimes, allowing the restoration of the finest image details.

Additional study of the Poisson image deblurring, presented in Fig.[3] further
proves that our methods WF-KPN-SA and WF-UNet allow to reconstruct the
smallest image details with excellent values of the metrics.
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Fig. 1. Predicted kernels in WF-K and WF-KPN methods for different images and the
corresponding restorations.

Ground
truth  Degraded WEF-K kernels WEF-KPN kernels WF-K  WF-KPN
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Fig. 2. Restoration of microscopy images degraded by PSF and Gaussian noise with
the standard deviations (o) from the set (0.001, 0.005, 0.01, 0.05, 0.1). The metrics
shown beneath each image are PSNR/SSIM. All images are originally grayscale, but
are shown in pseudo-color to stress the details in different structures, textures, and in
the background.

Distorted DMSP-NA WF-KPN WF-KPN-SA  WF-UNet

0=0.001, 36.30d8/0.9738  43.2508/0.9865 42.37B/0.9878 39.694B/0.9829 : . Y X 42.7208/0.9891 41.16dB/0.9837

Ground truth

0=0.005, 36.4608/0.9367  39.60d8/0.9624 40.284B/0.9669 38.484B/0.9605 35.23d8/0.9256 39.2508/0.9631 39.6008/0.9657 39.35dB/0.9638

... . . N

@=0.01, 33.4008/0.8853  38.20dB/0.9543 38.41d8/0.9496. 37.8508/0.9642 32.8308/0.9367 36.758/0.9322 38.5608/0.9647 38.05dB/0.9567

- . | | q .
2 | 3 4 R

0=0.01, 36.4908/0.8985  40.31dB/0.9575 40.2648/0.9504 39.8848/0.9758 36.82d8/0.9607 39.2048/0.9589 41.20d8/0.9778 40.85dB/0.9714

9=0.05, 25.9408/0.4506  30.46d8/0.8397 30.67dB/0.8389 30.6248/0.8418 28.46d8/0.6916 27.6048/0.6675 30.7208/0.8583 30.73d8/0.8360

5 F] ] [ o 5
0=0.05, 26.1108/0.4194  32.46d6/0.8759 32.4908/0.8782 32.3048/0.9048 29.638/0.8496 28.1908/0.8583 32.7908/0.9030 32.47d6/0.8853

0=0.1.21.5808/0.1772  28.48dB/0.7261 28.814B/0.7844 28.73dB/0.7472 28.8808/0.7846

@=0.1,20.64d6/0.2154  26.83dB/0.6435 27.63dB/0.6731 27.8648/0.6821 27.1148/0.6210 26.77d8/0.6085 27.9408/0.6829 27.55dB/0.6002
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Fig. 3. Restoration of microscopy images scaled to the maximum intensity peaks (p)
from the range (1, 2, 5, 10, 25, 50) and degraded by PSF and the Poisson noise.
The metrics shown beneath each image are PSNR/SSIM. The images are originally
grayscale, but are shown in a pseudo-color to stress the details in different structures,
textures, and in the background.

Ground truth Distorted

DMSP-NA HSPIRAL WF-KPN  WF-KPN-SA  WF-UNet

p=1, 9.18dB/0.0536 15.57dB/0.3496 20.13d8/0.3381 22.49dB/0.4857 22.00dB/0.4295 22.22dB/0.4419 22.81dB/0.4939

0.8

p=1, 8.83dB/0.0209 15.92dB/0.4056 21.11dB/0.3561 25.71dB/0.7066 23,84dB/0.5326 24.68dB/0.6747 25.77dB/0.7052

0.6

p=2,9.77dB/0.0452 22.39dB/0.5461  23.27dB/0.5464  24.24dB/0.5730 23.87dB/0.5599  23.93dB/0.5707  24.69dB/0.5947  24.74dB/0.5918 ‘

p=5, 17.91d8/0.1440 21.1208/0.5903 27.29dB/0.6498 28.28dB/0.7736 27.58dB/0.7160 27.400B/0.7216 28.39dB/0.7775 28.41dB/0.7843

ng‘.Q.--
Uil LU U@ T OS@ T UL 1T

30.00dB/0.8368 30.49¢B/0.8558 29.72dB/0.8332 29.91d8B/0.8437 30.440B/0.8560 30.74d8/0.8602

p=10, 17.82dB/0.1514 30. nadam 8106  30.29dB/0.8094  31.07dB/0.8275 29.33dB/0.7994  30.29dB/0.8098  31.07dB/0.8271  31.39dB/0.8320

02
S 3 3 S

p=25, 23.630B/0.3173 37.22dB/0.9330  3B.46dB/0.9576  38.61dB/0.9606  37.45dB/0.9527  37.60dB/0.9569  38.48dB/0.9615  38.94dB/0.9627

0.0

p=50, 24,79dB/0.4304 34.99dB/0.9004 35.29dB/0.9106 35,9608/0.9235 33,15d8/0,9070 35,91d8/0.9235 36.300B/0.9247 36.3808/0.9272



